$$ \left(\begin{array}{c} \hat{F}_{1,i,j}\\ \hat{F}_{2,i,j} \\ \vdots \\ \hat{F}_{C-1,i,j} \\ \hat{F}_{C,i,j} \end{array}\right) = \begin{pmatrix} \frac{\gamma_1}{\sqrt{\hat{\sigma}^2_1}+\epsilon} & 0 & \cdots & &0 \\ 0 && \frac{\gamma_2}{\sqrt{\hat{\sigma}^2_2}+\epsilon} & & & & \\ \vdots && \ddots && \vdots \\ &&& \frac{\gamma_{C-1}}{\sqrt{\hat{\sigma}^2_{C-1}+\epsilon}} & 0 \\ 0 && \cdots &0 & \frac{\gamma_C}{\sqrt{\hat{\sigma}^2_{C}+\epsilon}} \end{pmatrix} \cdot \begin{pmatrix} F_{1,i,j} \\ F_{2,i,j} \\ \vdots \\ F_{C-1,i,j} \\ F_{C,i,j} \end{pmatrix} + \begin{pmatrix} \beta_1-\gamma_1\frac{\hat{\mu}_1}{\sqrt{\hat{\sigma}^2_1+\epsilon}} \\ \beta_2-\gamma_2\frac{\hat{\mu}_2}{\sqrt{\hat{\sigma}^2_2+\epsilon}} \\ \vdots \\ \beta_{C-1}-\gamma_{C-1}\frac{\hat{\mu}_{C-1}}{\sqrt{\hat{\sigma}^2_{C-1}+\epsilon}} \\ \beta_C-\gamma_C\frac{\hat{\mu}_C}{\sqrt{\hat{\sigma}^2_C+\epsilon}} \end{pmatrix} $$